Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: covidwho-20242199

ABSTRACT

This study characterizes antibody and T-cell immune responses over time until the booster dose of COronaVIrus Disease 2019 (COVID-19) vaccines in patients with multiple sclerosis (PwMS) undergoing different disease-modifying treatments (DMTs). We prospectively enrolled 134 PwMS and 99 health care workers (HCWs) having completed the two-dose schedule of a COVID-19 mRNA vaccine within the last 2-4 weeks (T0) and followed them 24 weeks after the first dose (T1) and 4-6 weeks after the booster (T2). PwMS presented a significant reduction in the seroconversion rate and anti-receptor-binding domain (RBD)-Immunoglobulin (IgG) titers from T0 to T1 (p < 0.0001) and a significant increase from T1 to T2 (p < 0.0001). The booster dose in PwMS showed a good improvement in the serologic response, even greater than HCWs, as it promoted a significant five-fold increase of anti-RBD-IgG titers compared with T0 (p < 0.0001). Similarly, the T-cell response showed a significant 1.5- and 3.8-fold increase in PwMS at T2 compared with T0 (p = 0.013) and T1 (p < 0.0001), respectively, without significant modulation in the number of responders. Regardless of the time elapsed since vaccination, most ocrelizumab- (77.3%) and fingolimod-treated patients (93.3%) showed only a T-cell-specific or humoral-specific response, respectively. The booster dose reinforces humoral- and cell-mediated-specific immune responses and highlights specific DMT-induced immune frailties, suggesting the need for specifically tailored strategies for immune-compromised patients to provide primary prophylaxis, early SARS-CoV-2 detection and the timely management of COVID-19 antiviral treatments.


Subject(s)
COVID-19 , Multiple Sclerosis , Humans , COVID-19 Vaccines , T-Lymphocytes , COVID-19/prevention & control , Multiple Sclerosis/drug therapy , SARS-CoV-2 , RNA, Messenger , Immunity , mRNA Vaccines , Immunoglobulin G , Antibodies, Viral , Vaccination
2.
J Neurol Neurosurg Psychiatry ; 94(4): 290-299, 2023 04.
Article in English | MEDLINE | ID: covidwho-2248378

ABSTRACT

BACKGROUND: The decline of humoral response to COVID-19 vaccine led to authorise a booster dose. Here, we characterised the kinetics of B-cell and T-cell immune responses in patients with multiple sclerosis (PwMS) after the booster dose. METHODS: We enrolled 22 PwMS and 40 healthcare workers (HCWs) after 4-6 weeks from the booster dose (T3). Thirty HCWs and 19 PwMS were also recruited 6 months (T2) after the first dose. Antibody response was measured by anti-receptor-binding domain (RBD)-IgG detection, cell-mediated response by an interferon (IFN)-γ release assay (IGRA), Th1 cytokines and T-cell memory profile by flow cytometry. RESULTS: Booster dose increased anti-RBD-IgG titers in fingolimod-treated, cladribine-treated and IFN-ß-treated patients, but not in ocrelizumab-treated patients, although antibody titres were lower than HCWs. A higher number of fingolimod-treated patients seroconverted at T3. Differently, T-cell response evaluated by IGRA remained stable in PwMS independently of therapy. Spike-specific Th1-cytokine response was mainly CD4+ T-cell-mediated, and in PwMS was significantly reduced (p<0.0001) with impaired IL-2 production compared with HCWs at T3. In PwMS, total Th1 and IFN-γ CD4+ T-cell responders to spike protein were increased from T2 to T3.Compared with HCWs, PwMS presented a higher frequency of CD4+ and CD8+ terminally differentiated effector memory cells and of CD4+ effector memory (TEM) cells, independently of the stimulus suggesting the association of this phenotype with MS status. CD4+ and CD8+ TEM cell frequency was further increased at T3 compared with T2. CONCLUSIONS: COVID-19 vaccine booster strengthens humoral and Th1-cell responses and increases TEM cells in PwMS.


Subject(s)
COVID-19 , Multiple Sclerosis , Humans , COVID-19 Vaccines/therapeutic use , Multiple Sclerosis/drug therapy , T-Lymphocytes , Fingolimod Hydrochloride/therapeutic use , Cytokines , RNA, Messenger , Immunoglobulin G , Antibodies, Viral
3.
PLoS One ; 17(5): e0267245, 2022.
Article in English | MEDLINE | ID: covidwho-1910594

ABSTRACT

INTRODUCTION: REsilience and Activities for every DaY (READY) is an Acceptance and Commitment Therapy-based group resilience-training program that has preliminary empirical support in promoting quality of life and other psychosocial outcomes in people with multiple sclerosis (PwMS). Consistent with the Medical Research Council framework for developing and evaluating complex interventions, we conducted a pilot randomized controlled trial (RCT), followed by a phase III RCT. The present paper describes the phase III RCT protocol. METHODS AND ANALYSIS: This is a multi-centre cluster RCT comparing READY with a group relaxation program (1:1 ratio) in 240 PwMS from eight centres in Italy (trial registration: isrctn.org Identifier: ISRCTN67194859). Both interventions are composed of 7 weekly sessions plus a booster session five weeks later. Resilience (primary outcome), mood, health-related quality of life, well-being and psychological flexibility will be assessed at baseline, after the booster session, and at three and six month follow-ups. If face-to-face group meetings are interrupted because of COVID-19 related-issues, participants will be invited to complete their intervention via teleconferencing. Relevant COVID-19 information will be collected and the COVID-19 Peritraumatic Distress scale will be administered (ancillary study) at baseline and 3-month follow-up. Analysis will be by intention-to-treat to show superiority of READY over relaxation. Longitudinal changes will be compared between the two arms using repeated-measures, hierarchical generalized linear mixed models. CONCLUSION: It is expected that his study will contribute to the body of evidence on the efficacy and effectiveness of READY by comparing it with an active group intervention in frontline MS rehabilitation and clinical settings. Results will be disseminated in peer-reviewed journals and at other relevant conferences.


Subject(s)
Acceptance and Commitment Therapy , COVID-19 , Multiple Sclerosis , Clinical Trials, Phase III as Topic , Humans , Italy , Multicenter Studies as Topic , Multiple Sclerosis/psychology , Multiple Sclerosis/therapy , Quality of Life , Randomized Controlled Trials as Topic
4.
Neurology ; 98(5): e541-e554, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1673960

ABSTRACT

BACKGROUND AND OBJECTIVES: To evaluate the immune-specific response after full severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination of patients with multiple sclerosis (MS) treated with different disease-modifying drugs by the detection of both serologic and T-cell responses. METHODS: Healthcare workers (HCWs) and patients with MS, having completed the 2-dose schedule of an mRNA-based vaccine against SARS-CoV-2 in the past 2-4 weeks, were enrolled from 2 parallel prospective studies conducted in Rome, Italy, at the National Institute for Infectious diseases Spallanzani-IRCSS and San Camillo Forlanini Hospital. Serologic response was evaluated by quantifying the region-binding domain (RBD) and neutralizing antibodies. Cell-mediated response was analyzed by a whole-blood test quantifying interferon (IFN)-γ response to spike peptides. Cells responding to spike stimulation were identified by fluorescence-activated cell sorting analysis. RESULTS: We prospectively enrolled 186 vaccinated individuals: 78 HCWs and 108 patients with MS. Twenty-eight patients with MS were treated with IFN-ß, 35 with fingolimod, 20 with cladribine, and 25 with ocrelizumab. A lower anti-RBD antibody response rate was found in patients treated with ocrelizumab (40%, p < 0.0001) and fingolimod (85.7%, p = 0.0023) compared to HCWs and patients treated with cladribine or IFN-ß. Anti-RBD antibody median titer was lower in patients treated with ocrelizumab (p < 0.0001), fingolimod (p < 0.0001), and cladribine (p = 0.010) compared to HCWs and IFN-ß-treated patients. Serum neutralizing activity was present in all the HCWs tested and in only a minority of the fingolimod-treated patients (16.6%). T-cell-specific response was detected in the majority of patients with MS (62%), albeit with significantly lower IFN-γ levels compared to HCWs. The lowest frequency of T-cell response was found in fingolimod-treated patients (14.3%). T-cell-specific response correlated with lymphocyte count and anti-RBD antibody titer (ρ = 0.554, p < 0.0001 and ρ = 0.255, p = 0.0078 respectively). IFN-γ T-cell response was mediated by both CD4+ and CD8+ T cells. DISCUSSION: mRNA vaccines induce both humoral and cell-mediated specific immune responses against spike peptides in all HCWs and in the majority of patients with MS. These results carry relevant implications for managing vaccinations, suggesting promoting vaccination in all treated patients with MS. CLASSIFICATION OF EVIDENCE: This study provides Class III data that SARS-CoV-2 mRNA vaccination induces both humoral and cell-mediated specific immune responses against viral spike proteins in a majority of patients with MS.


Subject(s)
COVID-19 , Multiple Sclerosis , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , Humans , Immunity , Multiple Sclerosis/drug therapy , Prospective Studies , RNA, Messenger , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL